Curso Bioestadística I: Análisis de Datos Biológicos en R

Solicita información

Curso Bioestadística I: Análisis de Datos Biológicos en R

  • Contenido
    Curso Bioestadística I: análisis de datos biológicos en R.
    Horario:
    • Lunes, martes, miércoles, jueves y viernes 6:00 p.m. a 9:00 p.m.
    • Sábado 9:00 a.m. a 12:00 p.m.
    • Sábado 1:00 p.m. a 4:00 p.m.
    Duración: 9 sesiones - 27 horas

    Presentación:

    La bioestadística es una disciplina que proporciona las herramientas necesarias para gestionar datos biológicos, en su edición y análisis. Un buen manejo de la bioestadística es esencial para poder contestar preguntas biológicas o ecológicas, usando los datos apropiados, análisis necesarios y expresando los resultados de manera concisa y clara para que facilite su interpretación. En la actualidad, existe un mayor acceso a grandes cantidades de datos biológicos y ambientales de buena calidad, lo que supone grandes oportunidades para entender mejor nuestro frágil y siempre cambiante entorno ecológico. No obstante, el análisis correcto de estos datos sigue siendo un gran reto, y el constante mejoramiento de las técnicas hace indispensable la formación en bioestadística básica de los estudiantes y profesionales, para llegar a las mejores conclusiones ambientales posibles.

    Herramienta (software de análisis y modelación)

    R es un programa estadístico gratuito de libre acceso, que es continuamente actualizado y mejorado por los propios usuarios, mediante la creación y mantenimiento de nuevas bibliotecas de trabajo. Hoy en día, R se ha convertido en una herramienta imprescindible para cualquier científico de ciencias de la vida y de la tierra, y ha atraído a miles de usuarios en el mundo. El manejo de R puede resultar difícil al inicio por su estructura plana y poco interactiva, además de la necesidad de navegar en el programa con scripts de comandos. No obstante, con tiempo, usar R se vuelve más fácil y repetitivo, y el programa puede entonces ofrecer a sus usuarios una amplia gama de aplicaciones. Por su complejidad inicial, R es poco enseñado a nivel de pregrado, dado que los estudiantes apenas se familiarizan con la estadística. A nivel de posgrado y profesional, R se destaca por permitir manejar estadística avanzada en un entorno relativamente sencillo. Muchas revistas científicas indexadas hoy en día reconocen a R como programa clave y prefieren o hasta requieren su uso en manuscritos para publicación.

    Dirigido a:

    Este curso va dirigido a profesionales y estudiantes de pregrado o posgrado en ciencias naturales y ambientales que quieren desarrollar su conocimiento en bioestadística y aprender a manejar el programa R. Se esperan participantes especializados o especializándose en ecología, biología o ciencias ambientales, pero también profesionales y estudiantes en ciencias forestales y agronómicas. Se aceptarán otros perfiles profesionales previo a la consulta con la profesora de acuerdo con el perfil del participante.

    Objetivo:

    Objetivo General:

    El curso tiene como objeto principal proporcionar a los estudiantes las herramientas para editar y analizar datos biológicos en R. Se ofrecerán la teoría y práctica suficiente para que los estudiantes puedan en el futuro reproducir y adaptar los análisis vistos en clase a situaciones concretas pero que también muestren un manejo de R suficientemente ágil para extrapolar sus conocimientos a diferentes tipos de análisis.

    Objetivos Específicos:

    Se espera que al finalizar el curso, los estudiantes esten en capacidad de:

    •     Manejar el programa R, scripts de comandos, gráficos y análisis.
    •     Editar bases de datos biológicas (observaciones y variables).
    •     Conocer la teoría de la bioestadística y aplicaciones en R de análisis descriptivos, univariados, bivariados y multivariados.
    •     Realizar representación númerica y gráfica de datos y resultados.
    Metodología:

    El curso es de 27 h, divididas en 9 sesiones teórico-prácticas de 3 horas cada una, durante 8 días, más 27 h de trabajo personal adicional (ej. búsqueda de bibliografía, trabajo en scripts). Al final del curso, los estudiantes tendrán que realizar un trabajo corto de análisis estadístico en R que presentarán frente a la clase. Se espera que con este trabajo, los estudiantes se entrenen en usar R en situación no-supervisada en interactuar y recibir feedback sobre sus resultados por parte de sus compañeros.

    La Universidad de los Andes otorgará un certificado de participación, a los estudiantes que cumplan con los requisitos académicos definidos por Departamento de Ingeniería Civil y Ambiental, obtener una nota mayor a 3/5 en el curso (trabajo final más presentación oral), y que hayan cursado como mínimo el 85% de horas programadas.

    Contenido:

    Sesión 1: Introducción a R.
    Introducción al programa. Comandos básicos en R. Obtención y edición de los bases de datos de trabajo: datos biológicos (cualitativos, cuantitativos) y datos ambientales (continuos, discretos, dependientes e independientes).

    Sesión 2: Estadística descriptiva y representación de la información.
    Medidas de dispersión y variabilidad. Tablas y gráficos para presentar datos y resultados.

    Sesión 3: Métodos univariados.
    Planteamiento de hipótesis de trabajo. Distribución normal y alternativas, y sus propiedades. Pruebas paramétricas vs. no-paramétricas.

    Sesión 4: Métodos bivariados.
    Comparaciones de muestras (ej. t-Student, Chi2), Análisis de varianza (ej. ANOVA), Correlaciones (coef. de Spearman).

    Sesión 5: Métodos multivariados 1.
    Matrices. Ordenaciones (ej. Análisis de componentes principales, Análisis Canónica de correspondencias)

    Sesión 6: Métodos multivariados 2.
    Clasificaciones jerárquicas (ej. Clustering jerárquico aglomerativo) y no-jerárquicas (ej. K-means, Fuzzy C-means).

    Sesión 7: Métodos multivariados 3.
    Análisis discriminantes (linear, cuadrática). Análisis de regresión.

    Sesión 8: Preparación de la presentación.
    Trabajo en equipos de 2 o 3: (1) Planteamiento de pregunta(s) ecológica(s), (2) Creación y corrida de un script elaborado en R con datos reales, (3) representación numérica y gráfica de los resultados, (4) interpretación de los resultados y (5) creación de un PowerPoint corto (max. 10 diapositivas) resumiendo el trabajo.

    Sesión 9. Exposición de la presentación.
    Exposición oral de PowerPoint en equipo (15 min). Debate entre los estudiantes (5 min).

    Inscripciones:

    Profesionales y estudiantes de pregrado o posgrado en ciencias naturales y ambientales que quieren desarrollar su conocimiento en bioestadística y aprender a manejar el programa R. Se esperan participantes especializados o especializándose en ecología, biología o ciencias ambientales, pero también se considerarán otros profesionales y estudiantes (ej. ciencias forestales, agronómicas). Se aceptarán otros perfiles profesionales previo a la consulta con la profesora de acuerdo con el perfil del participante.

    •     Formas de pago
    •     Instructivo pago electrónico

    Si está interesado en inscribirse posterior a esta fecha, agradecemos contactarnos para conocer si aún es posible

    Eventualmente la Universidad puede verse obligada, por causas de fuerza mayor a cambiar sus profesores o cancelar el curso. En este caso el participante podrá optar por la devolución de su dinero o reinvertirlo en otro curso de Educación Continuada que se ofrezca en ese momento, asumiendo la diferencia si la hubiere.

Otra formación relacionada con biometría / bioestadísticas

  • Maestría en Ciencias Actuariales

  • Centro: Escuela Colombiana de Ingeniería Julio Garavito
  • Solicita información
  • Carrera en Ingeniería Estadística

  • Centro: Escuela Colombiana de Ingeniería Julio Garavito
  • Solicita información
  • Curso - Matemáticas Financieras

  • Centro: Fundación Pulso
  • Solicita información
  • Curso de Matemáticas Superiores

  • Centro: Fundación Pulso
  • Solicita información
  • Especialización en Educación Matemática

  • Centro: UPN - Universidad Pedagógica Nacional
  • Solicita información
  • Licenciatura en Matemáticas y Ciencias de la Computación

  • Centro: Universidad de La Salle
  • Solicita información
  • Curso de Estadística Básica con SPSS

  • Centro: Universidad de Bogotá Jorge Tadeo Lozano
  • Solicita información